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EFFECTIVE PERMEABILITY OF A HIGHLY POROUS -MEDIUM

V. I. Selyakov UDC 536.21:620.191.33

The problem of the effective conductivity of a medium with a low concentration of inclusions has been
treated in many papers (e.g., [1]). The case of a medium with a random distribution of circular inclusions
characterized by a binary correlation function was treated in [2] by using the apparatus of ensemble averages.
We use methods of the theory of functions of a complex variable to solve the two-dimensional problem of the
effective permeability of a medium with translational symmetry of an arrangement of circular inclusions.
Since a correlation function does not have to be defined for an ordered arrangement of inclusions, the effec-
tive permeability of the medium can be determined when the concentration of inclusions is not low. By using
methods of the theory of functions of a complex variable, we obtain an effective solution of this kind of prob-
lem for inclusions of arbitrary shape by conformal mapping onto the exterior of a unit circle. In this sense
the solution of the basic problem is reduced. The problem was solved by using the approach developed in [3, 4]
for determining the state of stress of a plane weakened by an infinite number of circular holes. The basic idea
of this approach consists in representing the required solution in the form of a Laurent series by expanding it
in terms of the small parameter ¢ =1/, where [ is the distance between centers of the inclusions, and using
the basic idea of the Bubnov—Galerkin method to find the expansion coefficients. As in the elasticity problem,
this is an effective method of solving transmissibility problems in a medium with an infinite number of in-
clusions. By averaging the solution over a macroscopic volume the effective transmissibility coefficient of
such a medium can be determined.

Filtration in a Medium with Circular Inclusions. Let us consider the steady filtration of a fluid in a
medium with circular inclusions arranged as shown in Fig. 1. Without loss of generality, we take the inclusions
of unit radius. The distances along the x and y axes between the centers of neighboring circles are assumed
equal to . Thus, the centers of the circles lie at the points

Za,p = l(n + ip)v

where i =v—-1;n=0, %1, £2,..., +; p=0, £2, ... £°, As in [5], it is convenient to describe fiitration flow
by introducing the complex potentials

oy = (ky/p)Py + ihy, v =0, 1.

Here ¢, corresponds to the filtration region in the medium outside an inclusion, and ¢, tothe region inside an
inclusion; the k; are the permeabilities of the medium and inclusion, respectively; y is the viscosity of the
fluid; the P, are the pressures of the fluid in the medium and within an inclusion respectively; the o p are the
flow functions. The complex potentials must satisfy Laplace's equation

Py = 0 . (1)

and are analytic in the respective domains of definition. In addition, the joining conditions

] 2 .

5 e @0 =50 Re gy @
41 35 1

ERGE’.(PD: %Reiﬂ:(pl' (3)
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must be satisfied on the boundary of an inclusion. Here the first equation represents the conservation of flux
along the normal n, to the boundary of the inclusion, and the second equation is obtained from the equality of
pressures on the contour of an inclusion after differentiating this condition with respect to the coordinate s
measured along the contour. The expression Re ¢, =Y,(¢, + ¢ p) denotes the real part of the potential. From
now on a bar over a quantity denotes its complex conjugate. Performing the differerentiation and adding Egs.
(2) and (3) gives a relation on the contour of a circular inclusion of unit radius [5]:

— ==t

L (0) + %o (6), (4)

C“Po (0) =

where o = exp(if) and o = ky/k;.

Similar conditions must be satisfied on the contour of any inclusion. In addition, the real parts of the
potentials must be bounded in their domains of definition and satisfy a condition at infinity. When the flux den-
sity at infinity u, is specified parallel to the x axis, the potential ¢, can be written in the form

Qo = Ugz + @,

where the function go}] is analytic outside the inclusions. The potentials being sought can be written in the form
of Laurent series, which, taking account of the above, have the form

Qo= oz + 2 Iy &)

N oo pa oo oy L8 L (n + IP)]R

= bpzt.
¢1 kgvl 24 (6)

I is interesting to note that the expression for the potential ¢, is in essence the sum of plane multipoles lo-
cated at the centers of the inclusions.

Thus, the solution of the problem is reduced to the determination of the unknown coefficients @y and by,
which can be found from Eq. (4). It follows from the symmetry of the problem that if the potentials ¢, and ¢,
satisfy (4) on one contour, they will automatically satisfy this condition on any other contour (o — zn,p). There-
fore, it is sufficient to consider the case ¢ =exp(ifd). We note that it also follows from the symmetry of the
problem that the even coefficients aj and bk must vanigh.

Equation (5) for the potential contains the series expansion parameter ¢ = 1/1 < 1/2. This consider-
ably simplifies the procedure for determining the coefficients by using the basic 1dea of the Bubnov —Galerkin
method. We expand in series in powers of & terms of the type [z — (1 /g)(n + 1p)] of potential (5), and sub-
stitute this expansion and the expression for the potential ¢, into the condition on the contour (4). As a result
we have

F (0) = 09 (0) — 2204, (0) — —5— 01 () = 0.

By requiring that the function F{(o) be orthogonal to the set of functions oK (k =0, 1, 2, ...), we obtain an in-
finite system of algebraic equations for e and by. By retaining a finite number of terms in the sums (5) and
(6) it is possible to obtain a finite system of algebraic equations and an approximate solution of the problem
with an accuracy which increases with an increase in the order of the approximation. For example, in the

second approximation k =1, 2, 3, the system of equations for ey and by has the form
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(1 — ay2]by, = —a,, [{1 — a)/2]b, = —a,.

(1 -+ a)/21b, = 1y — 200,87 — 12a5h52%, [(1 + a)/21b, = —a,h e —10a,h &8,
n=c§£;oo 1 t
where 7; = - (m) . Here the asterisk on the summation sign denotes the omission of the zero term
N=--00, p=—00

n =p =0 in the sum. I should be noted that the coefficients 'A; decrease rapidly with increasing t, and suc-
cessive approximations converge well even for ¢ — 1/2,

It is of interest to consider the limit as the inclusions in the medium become more widely spaced (& «
1/2) and absolutely impenetrable (o — ). Inthis case ¢; —byz — 0, since b; — 0 as @ — «, and gy—uyz +
ay/z, where @y = ugle —1)/ (e +1). Thus, in the limit the solution agrees with the well-known solution of the
problem of the flow of an incompressible fluid around a eylinder [51: ¢4 =0, ¢, =uy(l +1/2).

For a uniform medium (o = 1), as should be expected, the solution determines the potential flow of a fluid
with velocity u,. It should be noted that if the concentration of the inclusions is not low, u, loses its physical
meaning. In order to show this, let us calculate (q), the magnitude of filtration flow averaged over a macro~
scopic volume. It follows from the symmetry of the problem that

2
1 a
<‘1>=725‘§R9(P0 dy.
0 x=1/2
Using (5), we obtain in the third approximation
(D = uy — 20,8, — 2a5,¢*, (7

where

(21_"1’) a—1

Sy T
| I
R CE R C el

It is clear from (7) that for low concentrations of inclusions (e— 0), u, agrees with (q) and represents the
average flux density in the medium. For a highly porous medium (a = 0) the values of the @) < 0, and the
average flux density is larger than uj, which loses its original physical meaning. At the same time the poten-
tials (5) and (6) satisfy the solution of problem (1)-(3) but correspond to the case when the average flux density
is determined by (7).

by;

~1,65-107% o =210,

Effective Permeability of a Medium. For practical purposes it is very important to know the effective
permeability of a medium. Averaging over a macroscopic volume V can be performed most simply by using
the relation givenin [1]

1 { ko ) _ ___Iill

i (g =2 9P)av =<y —2<vPy,

where q(z) is the filtration flux outside and inside the inclusions: (q) and (VP) are the values of the flux and
pressure gradient averaged over a macroscopic volume. The integrand is different from zero only inside the
inclusions, whose concentration is N. As a result, the average value of the pressure gradient is

VP =L [¢gy — (b, — ) 2],
kO kl

Here L = f(8 /&%) Re ¢, dv, where the integration is not extended over the whole macroscopic volume, but only
with one of the inclusions. Accordingly, the effective permeability of the medium is determined with the form-
ula (K) = p{q)/{VP), and has the form

(k, —& -1
<K>=k0[1— (k11<q>0) LN] , ®)
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where (q) is determined by (7). Thus, to calculate the effective permeability it is necessary to know the values
of the coefficients in (6). In the first approximation, retaining only the terms with k =1 in (5) and (6), we ob-
tain by = 2u /(e + 1), and the expression for the effective permeability is

ky— k) Nnp® |7
—_ 1
® =12t ©

where R is the radius of an inclusion. For NTR?<« 1, Eq. (9) gives the well-known formula for the effective
transmissibility of a medium with widely spaced independent circular inclusions:

<K>=ko[1+2k1—k°NnR2].

byt

Successive approximations lead to a refinement of Eq. (9) and to an expression for the case when the concen-
tration of the inclusions is not low. I is easy to show that for successive approximations L = b17rR2, but the
value of b, is changed: b; = 2u, (@ + 1) [(@ + 1)*—3 (@—1)213e®] ™ in the second approximation, and b; = 2uy(ae +1) x
3(a—1)A2e8a+1)°
(a4 1)" — 78503 (@ — 1) &

1
[(a—}- 1)2— ] in the third approximation. Here ¢ = 1/]= R(Ni/z); Ay 3.247; M~

2.068.

It is of interest to consider the limiting case of a highly porous medium (@ — 0). The formula corre-
sponding to this case has the form

2my -1

[+ —0.313m (1 — 0.331m3) | [£ + 0.999m, + 0.0020m3]| (10)

(Ky=F, {-1 —

where m, = TR2N is the porosity of the medium.

Figure 2 shows (K)/k,, the reduced effective permeability of the medium, as a function of its porosity.
It is clear from the graph that the familiar linear relation (8) gives a good description of the effective per-
meability only for low porosity media (m, < 0.1). As m;- 7/4 the value of (K)/k;— =, and for m, =7 /4
the inclusions touch one another and form an infinite cluster. In this case there is a jump in the transmissi-
bility. In a system with a random distribution of inclusions, such a cluster is formed for appreciably smaller
values of the porosity [6].

It should be noted that Eq. (10) was derived by assuming the linear Darcy law, which does not hold for
high filtration velocities. In this case the filtration can be described by a two-term equation of the form [7]

VP = (WLEK))v - (plko)r?, (11)

where p is the density of the fluid and v is its velocity. When the second term on the right-hand side of Eq.
(11) is small in comparison with the first, Eq. (11) goes over into the linear Darcy law., With an increase in
the filtration velocity the term quadratic in the velocity increases more rapidly than the linear term, and from
a certain value vy it becomes dominant. In the equation describing the filtration of a fluid with higher ve-
locities, it is necessary to take account of inertial terms. .

It is of interest to estimate the limits of applicability of the linear Darcy law for describing filtration
in a highly porous medium. To do this it is necessary to know kp in Eq. (11). We estimate it by using the ap-
proach developed in {7]. According to [7] the quadratic term is related to VPp, the pressure gradient neces~
sary to overcome the filtration resistance related to the structure of the medium — the constriction and dilation
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of the pore channels. The linear term is related to the pressure gradient Vpp necessary to overcome internal
friction of the viscous fluid and friction on the walls of the pore channels. The total pressure gradient is deter-
mined by the sum of the gradients VP, and VP,.

The pressure drop VPP is related to the sudden broadening of a jet of fluid according to the Borda—Caxrnot
theorem, given by the relation

APy = (p/2)(un = up?,

where uy is the average flow velocity in the narrow part of the channel, and up is the average flow velocity in
the broadened part of the channel.

Taking account of the fact that the characteristic distance between pores in the medium is IR, the average
value of the pressure gradient VPp can be estimated in the form

VPo = (0/20R)(ug— up (12)
For steady flow (uy — up)
up — up = {gH{(1/8y — 1/8p), (13)

where Sy, and Sy, are the areas of the openings of the pore channels in the narrow and broadened parts of the
flow respectively. Introducing (1/8) (the average value of 1/8(x), where S(x) is the area of the opening of the
pore channels in the cross section with coordinate x), the average value of the flux density in the medium can
be written in the form

$q> = (v/mg){1/S}. , (14)
Substituting (13) and (14) into (12) and comparing the result with Eq. (11), we obtain
kp = 213%(%‘% <%>)2 (15)
We introduce a quantity my characterizing the porosity of the medium outside the pores. Then
Sp = mylR.
The quantity Sp corresponds to the cross section passing through the center of the pore:
Sy =201 + (I — )m]R.

By averaging 1/S(&) over an elementary volume containing the pore, we obtain

1—2e 1 f
<;—>= Rimp TRI(I= )|

x_
2

2 ln(a+1—V1—a2)(1+V1—az)]
Viea @+1+Vi—a)—Vi-a)f

where a= Imy/2(1 — mp). Substituting the expressions obtained for Sp, Sp, and (1/8) into (15), we obtain the
final expression for k Py which for Imy « 1 has the form

2
I z231m§{1—2e+mn—;3}. (16)

Let us estimate the filtration velocity vi for which the linear and quadratic terms in the two-term Eq. (11)
are equal. Using (16) we find

2uRlm? 2
th“ﬁ(‘l'—"zﬁ—l—mn—g‘) . (17)

Substituting into (17) g =10"* P, Rl =103 m, m; =0.636, my, =10"%, & =0.45, ky =101 D, and determining.
{K} /k, from Fig. 2, we obtain vy ~ 10 m/ sec,

Thus, the increase of the porosily of a medium as mj— 7/ 4 leads to a sharp increase in the effective
permeability (K), which in turn for a fixed pressure drop leads to an increase in the filtration velocity and an
increase in the quadratic term in the two-term filtration equation. As a result, starting from a certain value
of the velocity, the quadratic term becomes dominant, and a further increase in (K) has practically no effect
on the filtration velocity.



The relations we have derived enable us to determine not only the effective transmissibility of a medium
with circular inclusions of arbitrary concentration, but also to obtain an analytic solution of the two-dimen~
sional problem of filtration in a medium with translational symmetry of inclusions. The analytic solution can
be obtained with any accuracy. The solution we have presented wag obtained in the third approximation with
an accuracy of ~¢f. The method used can also be applied to solve transmissibility problems in a medium with
inclusions of arbitrary shape. It is very interesting that when the concentration of the inclusions is not low,
the quantity u,, characterizing the flux density at infinity for a problem with widely spaced inclusions, loses its
original physical meaning, and the solution obtained corresponds fo filtration of an average flux density differ-
ent from u,. We note that a similar effect occurs also in treating transport processes in a crystal lattice. This
fact must also be taken info account in treating elasticity problems, for whose solution the method used in the
present article was originally developed.

The anthor thanks V. S. Fetisov for drawing his attention to the question of the physical meaning of a flow
density specified at infinity for a medium with translational symmetry of inclusions.
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THERMAL BOUNDARY LAYER ON A CYLINDRICAL GAS COLUMN
WITH DISTRIBUTED HEAT SOURCES

Yu. V. Sanochkin UDC 553.6.011

The study of stream interaction with a gas domain where energy liberation occurs is of practical and
theoretical interest. We speak of problems when the leaking gas passes through the heat liberation space.
The situation mentioned can occur in meterology, in stream heating in an electric arc or other form of elec-
trical discharge, in the air cooling of stabilized gas heat-liberating elements in reactors, in powerful electron
beam or other kinds of penetrating radiation propagation in a gas medium, etc. However, systematic computa-
tions of the flow and heat-transfer patterns have been executed in application to conditions for longitudinally
air-cooled stabilized arcs. Their results are shown most completely in [1-4]. Semiempirical numerical
{2, 4] and integral [1, 3] methods were used. There is also a number of theoretical papers of general nature
on flows with distributed heat supply (see [5] and the citations there) and a cycle of investigations devoted to
laser beam propagation and discharges on a substance (see [6]) which are primarily of estimating nature in
the theoretical part.

The purpose of this paper is to compute the thermal boundary layer being formed during air cooling of
a cylindrical gas column with arbitrary volume heat sources by an unbounded stream. The stationary problem
is examined under the assumption that the main heat elimination mechanism is heat conduction. We limit our-
selves to the case of longitudinal blowing around the column of heat liberating gas. In the reference system
coupled to the free stream the problem is formulated differently: determine the perturbation of the gas state
by the moving distributed heat sources.
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366 0021-8944/82/2303-0366$807,.50 © 1982 Plenum Publishing Corporation



